Health of California’s Loop Detector System
نویسندگان
چکیده
The California Department of Transportation (Caltrans) freeway sensor network has two components: the sensor system of 25,000 inductive loop sensors grouped into 8,000 vehicle detector stations (VDS) and covering 30,500 freeway direction-miles; and the communication network over which the sensor measurements are transported to Caltrans Traffic Management Centers. The sensor network is virtually the only source of data for use in traffic operations, performance measurement, planning and traveler information. However, the value of these data is greatly reduced by the poor reliability of the sensor network: On a typical day in 2005, only 60 percent of the statewide sensor network provided reliable measurements. This is the report of an empirical study of the reliability of the sensor network based on two data sets. The first set, obtained from PeMS, consists of a daily summary of the quality of data received from each loop sensor in Caltrans Districts 4, 7 and 11 during the 27 month observation period January 2005–March 2007. The second data set consists of reports of field inspections of more than 4,000 loops each in Districts 4 and 7 during December 2005–December 2006 as part of Caltrans’ Detector Fitness Program. The study proposes and calculates three metrics of system performance: productivity is the fraction of days that sensors provide reliable measurements; stability is the frequency with which sensors switch from being reliable to becoming unreliable; and lifetime and fixing time— the number of consecutive days that sensors are continuously working or failed, respectively. Productivity measures the performance of the sensor system; stability measures the reliability of the communication network; lifetime and fixing time provide more detailed views of both components of the sensor network. These metrics are used to evaluate the differences in system performance in Districts 4, 7 and 11. Productivity in District 11 is much better than in Districts 4 and 7; District 4 is slightly worse than District 7. A significant part of the productivity difference is due to the large number of sensors in Districts 4 and 7 that never worked during the 27 month observation period. The stability metric shows that the communication network in all three Districts suffer shortterm outages; again, District 4 is the worst and District 11 is the best. The outages are likely due to the communication network technology, including protocols, that is used in the different Districts. The metrics are also used to evaluate the effectiveness of the Detector Fitness Program (DFP). The DFP is unlikely to be cost-effective: two-thirds of the visited loops show no improvement in system performance, the remaining one-third show marginal improvement. Simple suggestions for a more effective design of the DFP are offered. Lastly, the report proposes a statistical model of sensor failure that could be used in a scientific approach to the maintenance and replacement of the sensor system.
منابع مشابه
Evaluating the Health of California’s Loop Sensor Network
The California Department of Transportation (Caltrans) freeway sensor network has two components: the sensor system of 25,000 inductive loop sensors grouped into 8,000 vehicle detector stations (VDS) and covering 30,500 freeway direction-miles; and the communication network over which the sensor measurements are transported to Caltrans Traffic Management Centers. The sensor network is virtually...
متن کاملHigh Speed Delay-Locked Loop for Multiple Clock Phase Generation
In this paper, a high speed delay-locked loop (DLL) architecture ispresented which can be employed in high frequency applications. In order to design the new architecture, a new mixed structure is presented for phase detector (PD) and charge pump (CP) which canbe triggered by double edges of the input signals. In addition, the blind zone is removed due to the elimination of reset signal. Theref...
متن کاملLow Settling Time All Digital DLL For VHF Application
Settling time is one of the most important parameter in design of DLLs. In this paper we propose a new high speed with low settling time Delay Locked Loop (DLL) in which a digital signal processor (DSP) is used instead of using phase-frequency detector, charge pump and loop filter in conventional DLL. To have better settling time, PRP conjugate gradient algorithm is used to optimize delay of ea...
متن کاملDual Phase Detector Based Delay Locked Loop for High Speed Applications
In this paper a new architecture for delay locked loops will be presented. One of problems in phase-frequency detectors (PFD) is static phase offset or reset path delay. The proposed structure decreases the jitter resulted from PFD by switching two PFDs. In this new architecture, a conventional PFD is used before locking of DLL to decrease the amount of phase difference between input and outpu...
متن کاملCovariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection
In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...
متن کاملClose Following Behavior: Estimation of Desired Gap Headway Using Loop Detector Data (TECHNICAL NOTE)
The desired gap headway of drivers, while close following, represents the main parameter in determining the following distance between vehicles. This paper uses the raw individual vehicles data taken from loop detectors for millions of vehicles used M25 and M42 in order to estimate the gap headway distributions between successive pairs of vehicles. The data used in this paper were filtered so...
متن کامل